8 research outputs found

    A Study of Projections for Key Point Based Registration of Panoramic Terrestrial 3D Laser Scans

    Get PDF
    Abstract This paper surveys state of the art image features and descriptors for the task of 3D scan registration based on panoramic reflectance images. As modern terrestrial laser scanners digitize their environment in a spherical way, the sphere has to be projected to a two-dimensional image. To this end, we evaluate the equirectangular, the cylindrical, the Mercator, the rectilinear, the Pannini, the stereographic, and the z-axis projection. We show that the Mercator and the Pannini projection outperform the other projection methods

    A sensor skid for precise 3d modeling of production lines

    Get PDF
    ABSTRACT: Motivated by the increasing need of rapid characterization of environments in 3D, we designed and built a sensor skid that automates the work of an operator of terrestrial laser scanners. The system combines terrestrial laser scanning with kinematic laser scanning and uses a novel semi-rigid SLAM method. It enables us to digitize factory environments without the need to stop production. The acquired 3D point clouds are precise and suitable to detect objects that collide with items moved along the production line

    Algorithmic Solutions for Computing Precise Maximum Likelihood 3D Point Clouds from Mobile Laser Scanning Platforms

    No full text
    Mobile laser scanning puts high requirements on the accuracy of the positioning systems and the calibration of the measurement system. We present a novel algorithmic approach for calibration with the goal of improving the measurement accuracy of mobile laser scanners. We describe a general framework for calibrating mobile sensor platforms that estimates all configuration parameters for any arrangement of positioning sensors, including odometry. In addition, we present a novel semi-rigid Simultaneous Localization and Mapping (SLAM) algorithm that corrects the vehicle position at every point in time along its trajectory, while simultaneously improving the quality and precision of the entire acquired point cloud. Using this algorithm, the temporary failure of accurate external positioning systems or the lack thereof can be compensated for. We demonstrate the capabilities of the two newly proposed algorithms on a wide variety of datasets

    Towards mobile mapping of underground mines

    Get PDF
    Mobile laser scanning systems automate the acquisition of 3D point clouds of environments. The mapping systems are commonly mounted on cars or ships. This paper presents a flexible mapping solution mounted on an underground vehicle that is able to map underground mines in 3D in walking speeds. A clever choice of hard- and software enables the system to generate 3D maps without using GPS (global positioning system) information and without relying on highly expensive IMU (inertial measurement unit) systems

    Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration

    No full text
    Abstract—The iterative closest point (ICP) algorithm is one of the most popular approaches to shape registration currently in use. At the core of ICP is the computationally-intensive determination of nearest neighbors (NN). As of now there has been no comprehensive analysis of competing search strategies for NN. This paper compares several libraries for nearest-neighbor search (NNS) on both simulated and real data with a focus on shape registration. In addition, we present a novel efficient implementation of NNS via k-d trees as well as a novel algorithm for NNS in octrees. Index Terms—shape registration, nearest neighbor search, k-d tree, octree, data structures
    corecore